
Object Oriented Design & Analysis in Designing
PLs

By: Behrooz Nobakht, JellyJ Design Group

Analysis
1.Domains in Programming Language Development:
 Application Domain: Applications of the programming language
 Problem Domain: Application of the to-be-developed software

2.Requirement Analysis:

l It should be possible in principle for the program development process to
arrive at a program which can be used to solve the given problem.

l The user should be able to use the delivered program to solve most aspects
of the problem even if the program is not a complete solution (because 100%
solutions are improbable).

l Development progress towards a solution should be predictable.
l Program development should not require excessively many or scarce

resources (team training, team size, special-purpose experts, development time,
development environment).

l Program use (execution) should not require excessively many or scarce
resources (user/operator training, operators, execution time, execution
environment).

l Development processes (including maintenance) and delivered programs
(including upgrades) improve with repeated use of the language in more and more
projects.
l etc ...

3.Program Levels:
 Program Application:

• General-Purpose: (PL/I, Algol68)
• Problem-Oriented: (

System Programming: C, Modula-2, Ada
Data Processing: Cobol, 4GLs
Scientific Computing: Fortran
Simulation: Simula, SmallTalk
Symbolic Processing: Lisp, Snobol, ML
…)

• Domain Specific or 4GLs

 Application Interface:
• Interactive Processing:

o Text interaction: Basic, Prolog, Lisp, Logo
o Graphical Interaction: Visual Basic, SmallTalk, Java

• Real-Time Processing
• Concurrent Processing

o Ada, SmallTalk, Modula-2, Java (?)
• Batch Processing

 Program Processor:
• Interpreted programs: Lisp, Prolog, SmallTalk, ML
• Compiled programs: Ada, C, Cobol, Eiffel, Pascal, Fortran
• Virtual Machine:

o è Intermediate Languages: Java
• Machine Oriented

4.Program Representation

• Format-free textual PLs: Ada, C, C++, SmallTalk, Java, …
• Formatted textual PLs: Fortran
• Tabular
• Visual PLs: Icon-based, form-based, diagram-based

5.Architecture
• Architectural Style: What is the organization of the SW?

o Interacting Components (Objects, Agents) è
Communication-based Model of Computation
(Client/Server, Multi-Agent)

o Layered (Stratified Design):
§ Opaque: Access only adjacent layers
§ Transparent: Access any layer

o Pipes-and-filters è Data Flow Model &
 Sequence Paradigm
o Abstract Data Type
o API-Users
o Optimizing Alg.
o Task Spawning
o Repository
o Event-Driven

• Architectural Perspective:
o Conceptual Architecture
o Module Interaction Architecture
o Code Architecture
o Execution Architecture
o Note: “Many of the reported successes of the

surveyed systems resulted from allowing the different

architectures to develop independently while
maintaining the relationship between them.
Similarly, some of the problems they reported were a
direct result of merging or intermingling these
architectures.”

6.Programming Environment (Architecture)

• Edit-Compile-Test Programming (C, Pascal)
• Literate Programming
• Interactive Programming (Prolog, ML, SmallTalk (?))
• CASE
• Visual Programming (GUI Builders)
• Generators (4GLs, GUI Builders)
• The management of the SW Artifacts:

o Each Component in a file
o Components in libraries
o Components in a repository
o With version control

• Programming Reusable Components (Libraries, Frameworks) vs.
Programming a Ready-to-Be-Used Application

Requirements & Principles

1. Irreducible Requirements
• The Practicality Requirement

o The Adequacy Requirement:
§ è Problem Domain
§ Ability to express the solutions to all problems to be solved

in the program.
o The Translatability Requirement:

o There exists a processor to translate the programs.
• The Learnability Requirement: There is no point in a language that

requires too much learning before understanding enough to achieve
anything.

o The Programming Languages are for People.
o Brevity
o Simplicity including Familiarity & Standards
o Understatement Independence

• The Attractiveness Requirement
o Good Quality
o Application-based Attractiveness
o Don’t talk down to Programmers:

• Design for Yourself and Your Friends
• Give the Programmer as much control as possible

• A language attractiveness also depends on what is “sexy”
in the targeted programmer community:

• Object-Oriented vs. Functional
• Allowing or excluding bit manipulation
• Being Strongly Typed (Statically, Dynamically,

Mixed)
• Having verbose syntax with syntactic sugar
• Having sugar-free syntax uniform syntax

• The Productivity Requirement: Programming Languages are for People
o The Correctness Requirement

• The Error Prevention Requirement
• Principle of Locality
• Principle of Lexical Coherence
• Principle of Too Much Flexibility

• The Error Detection Requirement
o The Reusability Requirement

• Features: Abstraction, Naming, Generics
• Features: Inheritance, Delegation mechanisms
• Portability
• Factorization
• Internationalization
• Module Library

• The Code Management Requirement:
o The Separability Requirement:

• Development/Reuse/Maintenance of the program can be
split into a team of programmers.

2. Standard Requirements
General Advices:

• A Program should Be Good for Throwaway Programs.
• Programming Languages are for People
• The Human Thought Property
• Design for Yourself and Your Friends
• Give the Programmer as Much Control as Possible
• Aim for Brevity
• Admit what Hacking Is
• Principle of Frequency
• Principle of Locality
• Principle of Lexical Coherence
• Principle of Distinct Representation
• Principle of Too Much Flexibility
• Principle of Semantic Power
• Simplicity

o KISS: Keep It Simple Silly
o The fewer concepts in a language to understand the better.

o Two smaller concepts might be simpler then one more powerful
but complicated one.

o Uniformity: Rules are few and simple.
o Generality: A small number of general functions provide as

special cases of more specialized functions.
o Familiarity: Familiar symbols and usages adopted whenever

possible.
o Brevity: Economy of Expression is sought.
o Regularity: The fewer exceptions to the rule the better.

• Consistency: Similar constructs should look similar.
• Redundancy: All error detection is based on redundancy.

3. Orthogonality
Defined for a construct in a programming language where has two parts:

o Semantic Independence:
§ The semantics of original constructs in the language remain

unchanged by the addition of new ones.
o Compositional Semantics:

§ If the new construction uses components phrases from the
original language, then the semantics of the construction is
uniformly defined with respect to the component phrases _
there are no “special cases”.

o Cleanly Integrated Features
o Composability of the Features:

§ Create new Solutions for the problems that would need
extra feature.

o Avoid Special-Purpose Features
o Performance Independence
o Understatement Independence

4. Expressiveness (Expressive Power)
5. Evaluating a Programming Language (How To)

Conceptual Modeling Methods Evaluation:
• Expressibility
• Clarity
• Semantic Stability
• Semantic Relevance
• Validation Mechanisms
• Abstraction Mechanism
• Formal Foundation

6. Developing Methods for Programming Languages
• Re-use
• Experimental Prototyping
• Formalizing
• Iterative
• Evolving a Programming Language

•

