Object Oriented Design & Analysisin Designing
PLs

By: Behrooz Nobakht, JellyJ Design Group

Analysis
1.Domains in Programming L anquage Devel opment:

Application Domain: Applications of the programming language
Problem Domain: Application of the to-be-developed software

2.Requirement Analysis:

o It should be possblein princple for the program devel opment processto
arive & aprogram which can be usad to solve the given problem.

e The user should be able to use the ddivered program to solve most agpects
of the problem even if the program is not a complete solution (because 100%
olutions are improbeble).

o Devdopment progress towards a solution should be predictable.

e Program devel opment should not require excessvely many or scarce
resources (team training, team Sze, oedid- purpose experts, deve opment time,
Oevel opment environment).

o Program use (execution) should not require excessvely many or scarce
resources (user/operator training, operators, execution time, execution
environmen).

e Devdopment processes (induding mantenance) and ddivered programs
(induding upgrades) improve with repested use of the language in more and more
projects.
ectC...

3.Program Levels.
Program Application:
Generd-Purpose: (PL/I, Algol68)
Problem-Oriented: (

Sysem Programming: C, Modula-2, Ada
Data Processing: Cobol, 4GLs

Scientific Computing: Fortran

Smulaion: Smula, SmdlTak

Symbolic Processing: Lisp, Snobol, ML
)

Domain Specific or 4GLs

Application Interface:
Interactive Processing:
0 Textinteraction: Basic, Prolog, Lisp, Logo
0 Graphicd Interaction: Visud Basic, SmdITdk, Java
Real-Time Processing
Concurrent Processing
0 Ada SmdITdk, Modula-2, Java (?)
Batch Processing
Program Processor:
- Interpreted programs. Lisp, Prolog, SmalTak, ML
Compiled programs. Ada, C, Coboal, Eiffd, Pascal, Fortran
Virtud Machine
0 => Intermediate Languages. Java
Machine Oriented

4.Program Representation

Format-free textua PLs. Ada, C, C++, SmdllTdk, Java, ...
Formatted textua PLs. Fortran

Tabular

Visud PLs Icon-based, form-based, diagram-based

5.Architecture
- Architectural Style: What is the organization of the SW?
0 Interacting Components (Objects, Agents) =
Communication-based Model of Computation
(Client/Server, Multi-Agent)
0 Layered (Stratified Design):
= Opague: Accessonly adjacent layers
= Trangparent: Access any layer
Pipes-and-filters =» Data Flow Modd &
Sequence Paradigm

(@)

Abstract Data Type
API-Users
Optimizing Alg.
Task Spawning
Repository
0 Evet-Driven
Architectural Perspective:
0 Conceptua Architecture
Module Interaction Architecture
Code Architecture
Execution Architecture
Note: “ Many of the reported successes of the
surveyed systems resulted from allowing the different

O OO0 OO0

o O 0O

architectures to devel op independently while
maintaining the relationship between them.
Similarly, some of the problemsthey reported were a
direct result of merging or intermingling these
architectures.”

6.Programmi nq Environment (Architecture)
Edit- Compile-Test Programming (C, Pascal)
Literate Programming
Interactive Programming (Prolog, ML, SmdlTak (?))
CASE
Visud Programming (GUI Builders)
Generators (4GLs, GUI Builders)
The management of the SW Artifacts:
o Each Componentin afile
0 Componentsin libraries
o Componentsin arepository
o With verson control
Programming Reusable Components (Libraries, Frameworks) vs.
Programming a Ready-to-Be-Used Application

Requirements & Principles

1. Irreducible Reguirements
The Practicality Requirement
0 The Adegquacy Requirement:
= =>» Problem Domain
= Ability to express the solutions to al problems to be solved
in the program.
0 The Trandatability Requirement:
0 Thereexissaprocessor to trandate the programs.
The Learnability Requirement: There is no point in alanguage that
requires too much learning before understanding enough to achieve
anything.
o0 TheProgramming Languages arefor People.
0 Brevity
o Smplicity induding Familiarity & Standards
0 Understatement Independence
The Attractiveness Requirement
0 Good Quality
0 Applicationbased Attractiveness
o Don’t talk down to Programmers:
Design for Yoursdf and Your Friends
Give the Programmer as much control as possible

A language atractiveness dso depends on what is“sexy”
inthe targeied programmer community:
Object-Oriented vs. Functional
Allowing or exduding bit manipulation
Being Strongly Typed (Stticdly, Dynamicaly,
Mixed)
Having ver bose syntax with syntactic sugar
Having sugar-fr ee syntax uniform syntax
The Productivity Requwement Programming L anguages are for People
0 The Correctness Requirement
The Error Prevention Requirement
Principle of Locality
Principle of Lexical Coherence
Principle of Too Much Flexibility
The Error Detection Requirement
o The Reusabmty Requirement
Features:. Absraction, Naming, Generics
Features. Inheritance, Delegation mechaniams
Portability
Factorization
Internationdization
Module Library
The Code M anagement Requirement:
0 The Separability Requirement:
Deve opment/Reuse/Maintenance of the program can be
gplit into ateam of programmers.
2. Standard Reguirements
Generd Advices.
A Program should Be Good for Throwaway Programs.
Programming Languages arefor People
The Human Thought Property
Design for Yoursdf and Your Friends
Givethe Programmer as Much Control asPossible
Aim for Brevity
Admit what Hacking I's
Principle of Frequency
Principle of Locality
Principle of Lexical Coherence
Principle of Distinct Representation
Principle of Too Much Flexibility
Principle of Semantic Power
Simplicity
0 KISS: Keeplt Smple Silly
0 Thefewer conceptsin alanguage to understand the better.

o Two smdler concepts might be smpler then one more powerful
but complicated one.
0 Uniformity: Rulesare few and smple.
0 Generality: A smal number of generd functions provide as
specid cases of more pecidized functions.
o Familiarity: Familiar symbols and usages adopted whenever
possible.
0 Brevity: Economy of Expresson is sought.
0 Regularity: The fewer exceptionsto the rule the better.
Consistency: Similar congructs should look smilar.
Redundancy: All error detection is based on redundancy.

3. Orthogonality
Defined for a construct in a programming language where has two parts:
0 Semantic Independence:
= Thesemantics of origind condructsin the language remain
unchanged by the addition of new ones.
o Compostional Semantics.
= |f the new congtruction uses components phrases from the
origind language, then the semantics of the condtruction is
uniformly defined with respect to the component phrases
there are no “specid cases’.
o0 Cleanly Integrated Features
o0 Composability of the Features:
= Create new Solutions for the problems that would need
extrafesture.
0 Avoid Special-Pur pose Features
o Performance |ndependence
0 Understatement Independence

4. Expressiveness (Expressive Power)

5. Evaluating a Programming Language (How T0)
Conceptuad Modeding Methods Evauation:
Expressibility
Clarity
Semantic Stability
Semantic Relevance
Validation M echanisms
Abstraction M echanism
Formal Foundation

6. Devel oping Methods for Programming L anguages
Re-use
Experimental Prototyping
Formalizing
Iterative
Evolving a Programming L anguage

