
Educational Object Oriented Programming Language Design:
(A Survey On Blue Language)

Hojjat Sheikhattar
Hojjat@users.sourceforge.net

Some design principles (some of them are barrowed from Blue language
paper):

1. Pure Object Oriented: It means no non-class base code find in the
language. It also indicates that, we are trying to omit any type which is
not a class from the language.

2. No Conceptual Redundancy: It states that there should be one [it is
better to say only one] well-defined mechanism to express each
concept.

3. Clean Concept: It means that the concept – which is wanted to teach-
be represented in the language in a way that directly reflects the
theoretical model and is not compromised by secondary issues.

4. Readability: The language must itself help (in other words force!) the
developer to write a readable code.

Requirements for an object oriented teaching language:

(extracted from “REQUIREMENTS FOR A FIRST YEAR
OBJECTORIENTED TEACHING LANGUAGE”
Michael Klling, Bett Koch and John Rosenberg
Basser Department of Computer Science
University of Sydney, Australia)

1. The language should support clean, simple and well
defined concepts. This applies especially to the type
system, which will have a major influence on the
structure of the language. The basic concepts of
objectoriented programming, such as information
hiding, inheritance, type parameterisation and dynamic
dispatch, should be supported in a consistent and easily
understandable manner.

2. The language should exhibit "pure" objectorientation
in the sense that objectoriented constructs are not an
additional option amongst other possible structures,
but are the basic abstraction used in programming.

3. It should avoid concepts that are likely to result in
erroneous programs. In particular it should have a
safe, statically checked (as far as possible) type
system, no explicit pointers and no undetectable
uninitialised variables.

4. The language should not include constructs that
concern machine internals and have no semantic value.
This includes, most importantly, dynamic storage

allocation. As a result the system must provide
automatic garbage collection.
5. It should have a well defined, easily understandable
execution model.

6. The language should have an easily readable,
consistent syntax. Consistency and understandability
are enhanced by ensuring that the same syntax is used
for semantically similar constructs and that different
syntax is used for other constructs.

7. The language itself should be small, clear and avoid
redundancy in language constructs.

8. It should, as far as possible, ease the transition to other
widely used languages, such as C.

9. It should provide support for correctness assurance,
such as assertions, debug instructions, and pre and post
conditions.

10. Finally, the language should have an easytouse
development environment, including a debugger, so
that the students can concentrate on learning
programming concepts rather than the environment
itself.

Some Good Ideas which is used in Blue Language (extracted form Blue
Language Spec.) :

1. Manifest & Dynamic Classes:

Manifest classes are classes where all objects are known statically. The
objects pre-exist with the definition of the class and do not have to be created.
The manifest classes are Integer, Real, Boolean, String and Enumeration
classes. The first four of those are predefined and all values are known to the
Blue compiler. Enumeration classes are user defined. The definition of such
a class consists of an enumeration of all existing objects of that class,
simultaneously creating a named reference to each object.
The literal '2', for instance, is a reference to the unique integer object with the
value 2. The code segment
a := 2
b := 2
assigns references to the same object to a and b. Only one integer object with
the value 2 exists. This does not create two distinct objects.
All literals are constant references to objects of manifest classes.
Dynamic classes are classes where, rather than listing all objects, a creation
method for objects is specified. Dynamic classes are arrays and user defined
general classes.
With the definition of a dynamic class, no object is created automatically. The
user has to execute an explicit create operation to create objects of these types.
Care must be taken not to confuse this with pointer and non-pointer types in
other languages. In Blue, all variables hold references to objects. An
integer variable holds, when assigned a value, the reference to that integer

object. Thus the object model is simple: only references to objects exist. The
difference between manifest and dynamic objects affects only the time and
method of creation of the objects of the class, not the mechanism by which
they are referenced.

2. Aliases:

All types in Blue are classes and all data are objects. This general rule
simplifies the language design. There are, however, a number of data types
for which it is convenient to use syntax other than the Blue object call to
perform one of their operations. The reason for this can be:
• Another syntax is commonly used and is therefore more intuitive (e.g.
3 + 5 for integer addition, rather than 3.add (5)).
• Another syntax simplifies use of elementary constructs which should be
used by beginners before the underlying language concepts need to be
understood, e.g.
print (“result=“, 42)
instead of
output.write (“result=“.concat (42.toString))
• Another syntax is more convenient (usually because it is shorter, see above).
For these reasons, several operations on the predefined classes are supported
by special syntax. This special syntax is allowed in addition to the standard
object-call syntax generally available for all classes, and is referred to as
aliases.
The prime reason for the introduction of aliases is to make the reading and
writing of simple programs performing elementary tasks easy. Aliases
provide an easy, intuitive syntax for the most common operations and
considerably increase the ease with which Blue can be used by beginners.
Aliases will be learnt as statements or expressions in their own right by
beginners, making it unnecessary to understand all underlying concepts right
from the start. The expert programmer or compiler implementor, however,
will appreciate the unifying concept for all data types.
Note that aliases are a pure syntactic addition which does not add any
functionality to the language. They do not affect the semantics or the
theoretical language description of Blue (although they are part of the
language), and are purely intended to increase readability and intuitivity of
statements.
Some common aliases and their resolutions are:
alias resolution
3+6 3.add (6)
b1 or b2 b1.or (b2)
a[i] a.getElem (i)
str (num) num.toString
str (a, b, ...) a.toString.concat (b.toString.concat (...))
print (a, b) output.write (str (a.b))

The list of existing aliases is short and fixed – programmers cannot define
additional aliases.

