

JellyJ

Language Specification
White Paper

Mohammad Mahdi Amirian
Jamal Pishvayee

Hojjat Sheikh Attar
Behrooz Nobakht

Shraif University of Technology
Computer Engineering Department

Preface

JellyJ has been started for the project of the compiler course. This projects is
in her early stages and needs much effort to enhance. The current members are
the attendants of the course. Thus, all opinions are warmly welcome for the
project. The contact information following here can be used to honor us:

 1. JellyJ Design Group jellyj@users.sf.net
 2. Mohammad Mahdi Amirian amirian@users.sf.net
 3. Hojjat Sheikh Attar attar@users.sf.net
 4. Jamal Pishvayee seyyedjamal@users.sf.net
 5. Behrooz Nobakht behrooznn@users.sf.net

We are waiting for you.

0. A word with the Reader

In the text following, we have assumed that the reader is familiar with basic
OO concepts. These concepts may consist of classes, objects, methods,
attributes, inheritance, interfaces, etc. Moreover, this text is not to be used as a
tutorial. Merely, it is introducing the JellyJ language and may be referenced as
the language specification.

1. What is JellyJ?

It is a pretty, simple, pure object oriented programming language. Its main
goal is to design an OO language without complexity of existing languages,
which is divided into two major sub-purposes. This project is following two
major aims in its development process. The one that is more significant is to
design a simple "educational" programming language excluding the
complexities and peculiarities of the common powerful PLs. The other one
through this project is to simplify and purify a common OO PL like Java for
the purpose of using in this project.

2. Why JellyJ?

On the other hand, JellyJ syntax is similar to Java to some extent. You have
heard a lot about Object-Oriented programming. You have even tried many
times to learn it (or even teach it to somebody) with SmallTalk, C++, Java, etc.
but you were engulfed with the "too" strict syntactic restriction and got bored.
You gave it up! Now, you can try ours. JellyJ is simple, Object-Oriented, pure
and easy to learn. You will enjoy what is called Object-Oriented. The JellyJ
syntax makes the OO principles seem natural and easy to catch for the novice
programmer.

One of our main principles is conceptual consistency, which means reducing
exceptions in language concepts. We have followed the way to reduce two
specific rules into one more general one. We believe learning limited but
pervasive rules is better than learning too many specific rules. Thus, it is tried
best to design JellyJ so that as few rules as possible are used by the
programmer to code.

Moreover, to assure consistency, a great attempt has been made to put only
one solution for every single problem. In accordance with this principle, JellyJ
will avoid any exceptions in its conceptual structure and design. Every rule is
as general as possible without making exceptions to particular inconsistencies
in the rules.

3. JellyJ Fundamentals

In JellyJ, all codes are embedded in classes and there is not any
non-class-based code. Each class consists of attributes and methods.
Both of class definition and declaration for each class are placed in one file.
But each file can hold more than one class. In other words, a file is a package
of classes and programmer name the package with a language structure at the
first line of the file.

There is no distinction between classes and types. All types are classes and all
classes are types. So we can use “type” and “class” interchangeably.
There are two kinds of classes in the language: “Primitive Classes”, and
“Regular Classes”, which will be described later in the text.

An instance of a class is called an Object. An Object can store data inside
itself and it has some state in every instant of time.

Methods and attributes are also two kinds: “Class-Scope”, and
“Object-Scope”. Class-Scope methods and attributes can only be used with
identifying the class name and Object-Scope methods and attributes are
referenced with the aid of an Object identifier. Class-Scope and Object-Scope
will be discussed later.

3.1 Classes

3.1.1 Primitive Classes

Observing the world, you will find that there are two kinds of existents. Some
of them are inventions that are made by human, and some of them are
primitive existents that are not produced by human. Paying more attention to
these two kinds, it will become crystal-clear that the human-made existents
(inventions) are constructed from the primitive existents, and human can make
instances of this type of existents, however, primitive existents are not made
by human and they can never make instances of them. Even if human makes
something identical to Oxygen, he has made an instance of artificial Oxygen,
not the primitive Oxygen. Returning to our purpose and OO programming, we
assumed that we have some primitives in the programming language world
and they are existents, so they are classes, but they are not regular classes. The
programmer cannot create (make instances of) them. However, their instances
are available in the programming world, same as the primitives in the real
world.

As an example, Integer is such a class; its instances (objects) are available in
the programming world. “1” is an instance of Integer class; we have only one
“1” there, so the programmer cannot make an instance of Integer class because
all of Integer numbers are existing instances of Integer class. Thus, never do
we need and permit to make an instance of Integer class or remove one of its
instances.

String is another example of Primitive Classes. You can imagine the infinite
set of string instances, all of which are available instances of the String class.

An example:

String name;
// Assigning some thing to name:
name = "JellyJ";

Note that in the above example we didn't make any instance of String class;
"JellyJ" is an available instance of the class and we simply assigned it to
“name”.

JellyJ Primitive Classes are: Integer, Real, String , Boolean .
Their interfaces (operations) are described in app endix A.

An example:

// Defining a reference to Integer
Integer myInt;
// It is null after running this line

myInt = 23
// 23 is an available instance of Integer class, we assign myInt
// to a reference to this object.

myInt = myInt.add(3);
// It is similar to write 23.add(3)

3.1.2 Regular Classes

 3.1.2.1 Class Structure

You, as the programmer, may define your own class (type). You may make
instances of the class (i.e. create objects from the class). As mentioned before,
a class consists of methods (operations and behaviors) and attributes (data).
Thus, access level of attributes and methods should also be mentioned. Each
attribute or method may be declared to be public, protected or private and the
programmer can set the accessibility of the method or attribute with these
keywords.

Note: The friendly access level has been omitted from the language to reduce
the language concepts as much as possible to follow the consistency rule of
the OO concepts. Friend methods and attributes are not OO essentials; they
are only for the programmer’s convenience.

A Regular class can be defined as below:

[class header] class identifier [inheritance]? [generic classes]?
{

 [[static]? [attribute declaration] | [method declaration]]*

}

From here to end of the text:

If we use a word between the brackets (i.e., [foo]), it means that the
word itself is not a keyword, but this word points to a set of words or
expressions that can be replaced with:

[something]?, [something], [something]+, [something]*:

[something]?:
It is optional to replace [something] with the mentioned set. In other
words, it denotes 0 or 1.

[something]:
It is mandatory to replace [something] and also you can only replace
one member of the set. It denotes exact one.

[something]+:
It is mandatory to replace [something] and also you can put one or
more members of the set. It denotes one or more than one.

[something]*:
It is optional to replace something there and also you can replace
more than one member. It denotes 0 or more. It should be mentioned
that separators may be different such as ‘,’ or ‘;’.

 [class header] class identifier [inheritance]? [generic classes]?
{
 class-scope {
 [[attribute declaration] | [method declaration]]*

}

 object-scope {
 [[attribute declaration] | [method declaration]]*
 }
}

A regular class may have a constructor. It is a class-scope method that is
called when an object is constructed. Also the programmer uses this method to
construct an instance from some class. In JellyJ, the name of this method
(constructor) is makeInstance(…) which may have some arguments .

An example:

// Declaring class shape
class Shape {}

...

// Defining myShape as a reference to the Shape class

Shape myShape;

// Making an instance:

myShape = Shape.makeInstance();

3.1.1.2 Class Header:

[class header] = abstract?

Sometimes, for future provision, the programmer does not want to implement
a behavior (a method). The reason may be because of inheritance hierarchy or
different usages and implementations of a specific behavior by distinguished
users. The keyword abstract assures that the programmer may define a
behavior without implementation of it. The restriction caused by this keyword
is that the programmer is limited to create objects form classes for which there
is no abstract unimplemented behavior.

3.1.1.2 Inheritance:

[inheritance] = inherits class-name implements interface-name+

3.1.1.3 Generic Classes

[generic classes] = identifies < class-name+ >

Usually, one of the common factors of the powerful programming languages is
the capability of type parameterization. Type parameterization or generic
classes permits the programmer to define general and useful behaviors,
although he/she does not specify the creatures for which these behaviors will
be adopted. As an example, take the very common behavior of sorting. It is
very wise to define a general but useful behavior named sort(arguments).
However, it is completely desirable not to specify the arguments. The reason
is that:

(a) Considering every possible creature makes the code huge.
(b) For new types of creature a new code should be inserted.

However, the generic class allows the programmer to leave sort as general as
possible. Though, he/she should tell the compiler that this sort is a generic
class. When using sort , the programmer should specify the creature on which
sort will takes place.

Unfortunately, in the original Java this feature has not been considered.

3.1.3 Interface Classes

interface class identifier [extends interface-class-name+]?

Very Often, even in the real world, there exist many behaviors that do not
belong to specific creatures, however, different ones have different
implementations of the behavior. We all think, but every human thinks
differently. Interface classes introduce this feature, which is very useful
according to OO concepts. It also should be mentioned that when a class is
declared as an interface, it is the same as to declare that class as pure
abstract.

3.2 Attributes

 [attribute declaration] = const? class-name identifier;

In JellyJ, when an attribute is declared, it is assigned to the value of null. This
approach comes from JellyJ design where the programmer is prevented from

assigning values to attributes when declaring them. The reason turns back to
consistency concepts. Attributes should be initialized in the constructor. This
rule has some advantages:

(a) Makes every initialization of all attributes to be placed
in the constructor. This restriction makes the code more readable
and clear.

(b) It makes the process of learning easier.

Moreover, in JellyJ, there exists no attribute, which is declared public. This
rule is placed in the design to conform to the Object Oriented and consistency
concepts. However, usually, this rule has been disobeyed for the convenience
of the programmer in many languages such as Java. However, we are not to be
convenient in JellyJ.

3.3 Methods

3.3.1 Method Declaration

[method declaration] = final? overriding? abstract? [access modifier]
class-name identifier([argument list]?) [throw statement]? ;

 [argument list] = [const class-name identifier]*

 [throw statement] = throws [class-name]+

[access modifier] = public | private | protected

Typically, when a class inherits another class, there are a number of choices to
make:

(a) The subclass wants to add some completely new behaviors,
which is simply direct. It just adds the new ones.

(b) The subclass needs to modify one of the behaviors of the
Superclass. This action is called overriding . The subclass
override s one of the methods of the superclass.

Sometimes, the superclass determines that some specific behavior that has
been implemented by it does not need anything more. In this case, the
superclass defines this special method as final. In this way, none of his
children may never override this method. (Just the same as the story of the
classes of type barren).

When a method is defined as abstract , it means that the implementation of the
behavior will come later in the class hierarchy or when somebody wants to use
this class. Refer to abstract described ahead in the text.

3.3.2 Special Methods

 3.3.2.1 Constructor

 public classname makeInstance(argument list);

 classname.makeInstance();

In JellyJ, every class has a class-scope method, which has the responsibility
of:

(a) Making an instance of the class.

(b) Initializing the attributes provided that they are specified in this
method.

This special method is called constructor. Constructor is an optional feature.
However, when there is no constructor defined by the programmer, JellyJ
compile r will define a default constructor, which only makes an instance of
the class. A class constructor is not inherited. The reason is that every single
class has attributes that are private by default, so a subclass may never access
attributes of the superclass. Though, there have been some provisions that a
subclass can use the super class’s constructor. Refer to Alias section.

An Example:

// First, we declare a class representing a person. Each Person

// has a ‘name’. This name would be given to him once when he/she //

is born.

 class Person {

 class-scope {

 public Person makeInstance (String pname) {

 name = pname;

 }

 }

 object-scope {

 private Sting name;

 }

 }

// And, now we can use the Person to give birth to a person named

// “JellyJ”.

 ...

 Person p;

 p = Person.makeInstance ("JellyJ");

 ...

Notes on Constructor method:

- One can overload makeInstance to implement various initialization.

- If a class does not have any written, the constructor for it will have a default

with no argument.

 - Constructors will not be inherited.

- If the superclass does not have a default constructor, the subclass must have at

least one constructor and, in every constructor it has, it must call one of the

Superclass constructors in the first line.

An Example:

 class Subclass inherits Superclass{

 class-scope {

 public Subclass makeInstance(String param){

 Superclass.makeInstance(param);

 ...

 }

 }

 ...

 }

 3.3.2.2 Static Initialization
Class-scope attributes must have some value when defined in
the class for the first time. Accordingly, one can write special a
method with a standard name installClass and add the
initializations in the method. This method will be automatically
called and its signature must be as illustrated below:

 class Subclass {

 class-scope {
 public void installClass() {
 objectCounter = 0;
 }
 }

 ...

 }

3.4 Aliases

All data are objects in this language and all operations are done via method
calls. This is nice, but there are some problems. For example, we introduced
add method for Integer Primitive Class to add to Integer numbers. So we
should write the following line to add 49 to 123:

Integer result;
Result = 123.add(49);

However, programmers prefer to use ‘+’ operator to add to numbers and it is
almost a standard. What must we do in this case ? Accepting Integer Class as
an exception (provide operator overloading for it)? Though, we chose another
way, aliases!

We prefer to accept Integer Class as an exception only in syntax not in
semantic. It means that we provide a way for some of the classes, which need
operators or any non-Object-Oriented syntax to allow users to write some non-
pure object-oriented code. Thus, the programmer uses this syntax as aliases
and compiler will replace them with the regular method calls. The programmer
must know that this syntax is added only for convenience. So, only a finite
number of aliases are available in the language and programmer can’t add or
remove anything to/from them.
Aliases example:

b1 || b2 (b1 and b2 are both Booleans) à b1.or(b2)
i1 – i2 (i1 and i2 are both Integers) à i1.sub(i2)
-j (j is an Integer or a real) à j.neg()
1[3] (l is an array) à

The complete list of aliases will be in Appendix B.

3.5 Statements

 3.5.1 Variable Declaration

 const? class-name identifier [= expression]?

 3.5.2 Control Structures
 All control structures in JellyJ are the same as Java .

 3.5.2.1 If Structure:

 if ([condition])

statement

 3.5.2.2 For Structure:

 for ([initialization]*; [condition]; [update]*)

statement

 3.5.2.3 While Structure:

 while ([condition])

statement

 3.5.2.4 Do-While Structure:

 do

statement;
 while ([condition])

Note:

In the mentioned structures, if more than one statement is
required, they are grouped in a block with “{ }” , and “;” is not
needed after “}”.

 3.5.2.5 Switch Structure:

 switch (identifier) {
 [case value: [statement;]*]+
 [default : [statement;]*]?
 }

 3.5.2.6 Try-Catch-Finally Structure:

 try {

[statement;]*
}[catch (exception-type identifier} {[statement;]*}
]+
[finally {[statement;]*}]?

3.5.3 Assignments

We have two types of assignment.

identifier = expression

identifier ?= expression

One of the most frequent problems in Object-Oriented programming is
the case of casting objects. It is very often and useful that a

programmer wants to cast (up or down) two related objects. In the case
of upcasting, there usually will not raise a problem. On the other hand,
when using downcasting, there is always some cost to check whether
the cast is appropriate or not. In JellyJ, we have solved this problem
with the aid of two nice concepts:

(a) Generic classes which have been described
before.

(b) A new statement, which is called assignment attempt. In
this
concept, JellyJ compiler tries to do the assignment. Along
this process comes also the concept of casting. If JellyJ
compiler succeeds, it means that it was either a simple
assignment or it has been a cast which has been qualifie d
to be proper and correct. Otherwise, the compiler will
return null. So, it has been an illegal cast.

Using assignment attempt will remove the difficulties of the process of
casting.

3.6 JellyJ Rules

3.6.1 Class-scope methods and attributes
Against what is seen in Java , one can access class-scope attributes and
methods only through the class name and can not access them through
object instantiated.

An Example:
 class Person {

 class-scope {

 private Integer count;
 public Integer getPersonCount(){

 return count;

 }

 }

 ...

 }

..

 Person p = Person.makeInstance();

 p.getPersonCount(); // ERROR

 Person.getPersonCount(); // Proper Use

..

 3.6.2 Pre-defined Identifiers

Some words are pre-defined in classes to provide access to some
essential items

- This is a reference to the object and is defined in object-scope
methods.
- Super is a reference to the superclass object which will be
instantiated.

3.7 Built-In Classes
 3.7.1 Debug

One of the most useful assets to a programming language is the library
of Debug. Usually this library contains routines for assertion feature,
error tracing, etc. The Debug class facilitate the capability of the
programmer to test, debug and trace his programmer.

Moreover, the invariant feature is also placed in the Debug class. This
feature is used to assure certain conditions in the a class or a method.
An invariant consists of some Boolean expressions containing the
know arguments for a class or a method. This Boolean expression is
always checked to be true on certain checkpoints.

The Debug class is not an essential to the programming language. But
it will be considered as a complement library for it.

 3.7.2 Compiler
In this library, usually, some auxiliary methods that are used in the
context of objects and classes. These methods are usually used to gain
extra information about objects and classes, such as isInstanceOf(),
getClass(), etc.

In order to implement such library we need a class named Class. This
class will represent a class that can store information of class types.

 3.7.3 RunTime

 3.7.4 I/O

One the important factors in qualification of the programming
languages is the simplicity of I/O library.

It is obvious that a consistent and complete I/O hierarchy is an
essential need. This factor has been completely conformed in Java.
However, take a novice programmer, he/she wants to test the
programming language with a simple “Hello World!” message. In
Java, he/she will be puzzled up in the I/O hierarchy. In JellyJ design,
we decided to s implify the rules while complying to OO hierarchy of
Java I/O.

Appendix A

In JellyJ, it is to have only objects as creatures of the language. Therefore we
need to declare some of the primitive operations used for the primitive classes.
Also, there will be an equivalent alias for each of these operations. These
operations are illustrated here in appendix A, and the aliases will be described
in appendix B.

Integer Class:

class interface Integer
{

 class-scope {

 public static Real toReal(Integer someInt) {…} ;
 public static String toString(Integer someInt) {…};
 public static Integer maxInt(){…} ;
 public static Integer minInt(){…};
 }

object-scope {
 public Real add(Real someReal) {…};
 public Integer add(Integer otherInt) {…} ;
 public Integer subtract(Real otherInt) {…} ;
 public Integer subtract(Integer otherInt) {…} ;
 public Integer multiple(Real otherInt) {…};
 public Integer multiple(Integer otherInt) {…};
 public Integer divide(Real otherInt) {…};
 public Integer divide(Integer otherInt) {…};

 public Integer mod(Integer otherInt) {…} ;
 public Integer negative(Integer otherInt) {…};
 public Integer power(Integer otherInt) {…};

 public Integer bitAND(Integer otherInt) {…};
 public Integer bitOR(Integer otherInt) {…};
 public Integer bitNOT(Integer otherInt) {…};

 public Boolean isGrater(Integer otherInt) {…};
 public Boolean isLess(Integer otherInt) {…};
 public Boolean isEqual(Integer otherInt) {…};
 }

 }

Real Class:

class interface Real
{
 class-scope {

 public static Integer toInteger(Real someReal);
 public static String toString(Real someReal);
 public static Real toRealPart(Real someReal);
 public static Integer maxReal();
 public static Integer minReal();
 }
 object-scope {

 public Real add(Integer otherInteger);
 public Real add(Real otherReal);
 public Real subtract(Integer otherReal);
 public Real subtract(Real otherReal);
 public Real multiple(Integer otherReal);
 public Real multiple(Real otherReal);
 public Real divide(Integer otherReal);
 public Real divide(Real otherReal);
 public Real negative(Real otherReal);

 public Boolean isGrater(Real otherReal);
 public Boolean isLess(Real otherReal);
 public Boolean isEqual(Real otherReal);
 }
}

Boolean Class:

class interface Boolean
{

// object scope methods:

 public Boolean and(Boolean otherBool);
 public Boolean or(Boolean otherBool);
 public Boolean not(Boolean otherBool);

// class scope methods:

 public static String toString(Boolean someBool);
}

String Class:

class interface Boolean
{

// object scope methods:

 public String concatenate(String otherStr);
 public String subStr(Integer from, Integer length);
 public Integer findStr(String otherStr);
 public String putStr(Integer from, String otherStr);
 public String rmStr(Integer from, Integer length);
 public Integer getLength();
 public String lowerCase();
 public String upperCase();

 public Boolean isGrater(String otherStr);
 public Boolean isLess(String otherStr);
 public Boolean isEqual(String otherStr);

// class scope methods:

 public static String toString(Boolean someBool);
}

Appendix B

In this section, aliases for the operations of primitive classes are included.

Alias Original Usage Case

n + m n.add(m) Integer, Real
n – m n.subtract(m) Integer, Real

– n n.negative() Integer, Real
n * m n.multiple(m) Integer, Real
n / m n.divide(m) Integer, Real
n % m n.mod(m) Integer

a > b a.isGreater(b) Integer, Real, String
a < b a.isLess (b) Integer, Real, String
a >= b a.isGreat(b) | a.isEqual(b) Integer, Real, String
a <= b a.isLess(b) | a.isEqual(b) Integer, Real, String

!a a.not() Boolean
a | b a.or(b) Boolean
a & b a.and(b) Boolean

s[i] s.subStr(i,1) String
s1 + s2 s1.concatenate(s2) String

